Mark Scheme (Results)

November 2018
Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2018
Publications Code 1MA1_1H_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with an alternative response.

4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths)
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

11 Number in brackets after a calculation

Where there is a number in brackets after a calculation E.g. $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas E.g. " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets

Where a word is used in square brackets E.g. [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

Misread

If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity
B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

3	No (supported)	P1	for start to process, eg. $2100 \times \frac{40}{100}(=840)$ or $100-40(=60)$	May compare bonus shares of a single salesman or total bonus share for all 7 salesmen.
		P1	for process to find the 7 salesmen's share of bonus, eg $2100-" 840 "(=1260)$ or $2100 \times \frac{" 60 "}{100}(=1260)$	
		P1	for process to find bonus amount each salesman gets $\text { eg "1260" } \div 7(=180)$ OR process to find the total bonus for all salesmen if shared equally, eg $\frac{2100}{10} \times 7(=1470)$	
		P1	for process to compare what a single salesman gets under each scheme, eg " 180 " $\times \frac{25}{100}(=45)$ and " $\frac{2100}{10} "-" 180 "(=30)$ or " 180 " $\times \frac{25}{100}(=45)$ and " 180 " + " 45 " $(=225)$ oe and $\frac{2100}{10}(=210)$ or (" $\left.\frac{2100}{10} "-" 180 "\right) \div " 180 " \times 100(=16.6 \ldots)$	
		A1	OR process to compare what all salesmen gets under each scheme, eg " 1260 " $\times \frac{25}{100}(=315)$ and " 1470 " - "1260" (= $\left.=210\right)$ or " 1260 " $\times \frac{25}{100}(=315)$ and " 1260 " + " 315 " ($=1575$) oe and " 1470 " or (" $1470 "-" 1260 ") \div$ " $1260 " \times 100(=16.6 \ldots)$ 'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or $16 .(6 \ldots)(\%$ and $25 \%)$	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/1H}

\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \multirow[t]{3}{*}{9 (a)} \& \multirow[t]{3}{*}{box plot drawn} \& B1 \& ends of whiskers at 0 and 42 with a box \& The box can be of any height. Accept ends that are marked (eg line, cross, dot) or defined by the end of the whiskers if clear.

\hline \& \& B1 \& median at 10 inside a box \& Has to be inside a box; whiskers not required

\hline \& \& B1 \& for ends of box at 4 and 20 \& An independent mark that can be awarded for just a box; do not need whiskers for this mark.

\hline (b) \& Comparison \& C1 \& for a correct comparison of medians, eg. the median delay time on Mon was greater than the median delay time on Tues. or ft (a) \& Simply quoting values for median, range and IQR is insufficient, they must be compared

\hline \& \& C1 \& for a correct comparison of a measure of spread, eg. the interquartile range (range) of delay times on Mon was greater than the interquartile range (range) of delay times on Tues. or ft (a) For the award of both marks at least one of the comparisons must be in context \& Comparisons can relate to the median, and then either the range or the IQR.

\hline (c) \& statement \& C1 \& 'No' with statement explaining that there might not be any delays between 25 minutes and 30 minutes as in the upper 25% (12 trains) the delays may all be between 17 and 25 or 30 and 33 \& The 'No' may be implied from their wording, and could be written next to the "?" The statement must mention (or imply) values above the UQ of 17

\hline \& $$
\frac{1}{5(x-1)}
$$ \& B1 \& $$
\text { for } \frac{1}{5(x-1)} \text { or } \frac{1}{5 x-5}
$$ \&

\hline (b) \& $2(5+y)(5-y)$ \& M1

A1 \& for partial factorisation, eg $2\left(25-y^{2}\right)$ oe or $(10+2 y)(5-y)$ oe or $(5+y)(10-2 y)$ oe or $-2\left(y^{2}-25\right)$ oe for $2(5+y)(5-y)$ or $-2(5+y)(y-5)$ \&

\hline
\end{tabular}

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	Proof with $\frac{127}{495}$	M1 M1 C1	$0.25656 \ldots$ or $0.2+0.05656 \ldots$ or $(10 \times 0.2 \dot{5} \dot{6}=) 2$. $\dot{5} \dot{6}$ or $2.5656 \ldots$ or $(100 \times 0.2 \dot{5} \dot{6}=) 25 . \dot{6} \dot{5}$ or $25.6565 \ldots$ or $(1000 \times 0.2 \dot{5} \dot{6}=) 256.5 \dot{6} \dot{6}$ or $256.5656 \ldots$ for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer, eg. $256.5656 \ldots .-2.5656 \ldots$. or $25.6565 \ldots .-0.25656 \ldots$. or $256.5 \dot{6}$ - 2. $\dot{5} \dot{6}$ or $25 . \dot{6} \dot{5}-0.2 \dot{5} \dot{6}$ or for $\frac{254}{990}$ or $\frac{25.4}{99}$ full proof seen with $\frac{127}{495}$	
17	$(2,-9)$	P1 P1 P1 A1	substitutes $x=0, y=-5$ into $y=x^{2}+a x+b(b=-5)$ or substitutes $x=5, y=0$ into $y=x^{2}+a x+b(0=25+5 a+b)$ or starts process to find other intercept, eg writes $y=(x-5)(x-k)$ for complete process to find two intercepts, eg. substitutes the second point into $y=x^{2}+a x+b$ and solves to find a $(=-4)$ and $b(=-5)$ or substitutes $x=0, y=-5$ into $y=(x-5)(x-k)$ and solves to find $k(=-1)$ (dep on P2) for factorising or completing the square of $x^{2}+"-4 " x+"-5 "$ and identifying the x-coordinate of the turning point or for a complete process to find the x-coordinate of the turning point, $\operatorname{eg}(5+"-1 ") / 2$ cao	x-coordinate of 2 with no or incorrect working gets NO marks

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
$18 \quad \text { (a) }$	sketch$y=\mathrm{g}(-x)$	B1 B1	for appropriate sketch which crosses the x axis at $(2,0)$ and $(4,0)$, minimum point at $(3,-1)$ and end points at $(1,3)$ and $(5,3)$ cao	Allow some tolerance on the points if the intention is clear.
(b)				
19 (a)	shown	C1	for first step, eg $2\left((x+1)^{2}-1\right)$ or $2\left(x^{2}+2 x+1-1\right)$ oe	It is insufficient to state $\operatorname{gf}(x)=2 x(x+2)$ without showing the first step, and the following sequence of algebraic steps leading to it. Could be shown in the form of a flowchart, which must show inverse operations.
		C1	for fully correct chain of reasoning	
	4.5	M1	process to find inverse of g , eg $g^{-1}(x)=\frac{1}{2} x+1$ or for $2(x-1)=7$	
		A1	for 4.5 oe	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	fully correct working leading to $16(1+\sqrt{2})$	C1	for expanding the numerator, eg $18+2 \sqrt{2} \sqrt{18}+2$ or $\sqrt{324}+\sqrt{36}+\sqrt{36}+\sqrt{4}(=32)$ or for simplifying $\sqrt{18}$, eg. $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{18}+\sqrt{2}=4 \sqrt{2}$	Expanded terms need not be simplified
		C1	(indep) for method to rationalise the denominator, eg. $\frac{\text { "numerator" }}{\sqrt{8}-2} \times \frac{\sqrt{8}+2}{\sqrt{8}+2}$	
		C1	for fully correct working leading to $16(1+\sqrt{2})$	Accept $a=16, b=1$
21	3:4	P1	starts process eg $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ oe	
		P1	for process to find $\overrightarrow{O M}=\mathbf{a}+\frac{1}{2} "(\mathbf{b}-\mathbf{a}) "$ oe $\quad\left(=\frac{1}{2}(\mathbf{a}+\mathbf{b})\right)$	
		P1	for process to find $\overrightarrow{A P}=-\mathbf{a}+\frac{3}{5}$ " $\left(\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)$ " oe or (indep) for $\overrightarrow{A N}=-\mathbf{a}+" k " \mathbf{b}$	
		P1	process to find " k " using $\overrightarrow{A N}=-\mathbf{a}+$ " k " \mathbf{b} as a multiple of $\overrightarrow{A P}$	
		A1	cao	
		P1 P1 P1 P1 A1	ALTERNATIVE for producing $O M$ to C such that $A C$ is parallel to $O B$ for process to show that $M C=O M$, using congruent triangles $A C M$ and $B O M$ for process to find $P C$ as a multiple of $O M / 5(=7 O M / 5)$ for process to find $O N$ as a multiple of $A C(O B)(=3 O B / 7)$ using similar triangles $A C P$ and $N O P$ cao	Formal geometric reasoning relating to congruent and similar triangles is not required

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
22	21	P1	for a relevant probability, eg $\mathrm{P}($ green $)=\frac{x}{2 x+3}$ or $\mathrm{P}($ blue $)=\frac{x+3}{2 x+3}$	the number of green and blue pens could be $x-3$ and x or equivalent probabilities must be in an algebraic form in a single variable
		P1	for a relevant product, eg. " $\frac{x}{2 x+3} " \times$ " $\frac{x-1}{2 x+2}$ " or " $\frac{x+3}{2 x+3} " \times " \frac{x+2}{2 x+2}$ "	
			$\text { OR }\left(" \frac{x}{x+3} "\right)^{2}+\left(" \frac{x+3}{2 x+3} "\right)^{2}=\frac{27}{75}$	This is an exception using replacements. No further credit is available
		P1	forms an appropriate equation, $\text { eg. " } \frac{x}{2 x+3} \times \frac{x-1}{2 x+2} "+" \frac{x+3}{2 x+3} \times \frac{x+2}{2 x+2} "=\frac{27}{55}$	
		P1	(dep P3) process to reduce equation to $a x^{2}+b x+c=0$ eg. $x^{2}-25 x+84=0$	
		P1	process to solve quadratic equation eg. $(x-21)(x-4)=0$	
		A1	cao	

Modifications to the mark scheme for Modified Large Print (MLP) papers. Paper 1H.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm \mathbf{5 0}^{\mathbf{o}}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H		Modification	Mark scheme notes
Question			Standard mark scheme
7		Diagram enlarged. Shading has been changed to dotty shading. $D C$ labelled 20 cm.	Standard mark scheme
8	$(\mathrm{~b})$	Diagram enlarged. Angle moved outside of angle arc and angle arc made smaller. Wording changed to 'It shows a right-angled triangle $A B C$. $A B=4 \mathrm{~cm} \quad A C=x \mathrm{~cm} \quad$ Angle $A B C$ is a right angle Angle $B A C=60^{\circ}$.	

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
9		Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Horizontal axis marked in units of 5 from 0 to 50 . Vertical axis marked in units of 4 from 0 to 52 . Graph lines changed to go through the following points: $(5,12),(10,24),(20,36),(40,48)$ Graph line to finish at 48 . Wording changed from 'The longest delay was 42 minutes.' To 'The longest delay was 40 minutes.'	
9	(a)	Diagram enlarged. Wording 'below' removed. Horizontal axis label moved to the left of the axis and marked in units of 5 from 0 to 50 .	Standard mark scheme for the box plot drawing, but note that the box is drawn to the following points:
9	(b)	Horizontal axis label moved to the left of the axis and marked in units of 5 from 0 to 50. Wording 'below' removed. The box plot has been drawn as follows:	Standard mark scheme but note the comparisons could use the revised numbers quoted herein.
9	(c)	Question wording changed to 'The longest delay on Tuesday was 35 minutes. This means that there must be some delays of between 27 and 32 minutes.	Standard mark scheme but answers could use the revised numbers quoted herein.

PAPER: 1MA1_1H				
Question			Modification	Mark scheme notes
11		Frames removed from information.	Standard mark scheme	
12		Diagram enlarged. Angles moved outside of angle arcs and angle arcs made smaller. DAE line made slightly shorter.	Standard mark scheme	
13		Diagram enlarged. Letters deleted from inside the shapes but shapes labelled as 'triangle A' and 'triangle B'. Shading changed to dotty shading. Grid cut to (-5,5). Wording added 'It shows triangle A and triangle B on a grid.'	Standard mark scheme	
14	(b)	For Braille only: a changed to w, b changed to x and c changed to y	Standard mark scheme but note letter changes for braille.	
17		Diagram enlarged.	Standard mark scheme	
18	(a)	Diagram enlarged.	Standard mark scheme	
18	(b)	Diagram enlarged. Wording 'On the grid' removed. Wording 'It shows a grid' added.	Standard mark scheme	
21		Diagram enlarged.	Standard mark scheme	

